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Secondary instability of crossflow vortices
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Crossflow-dominated swept-wing boundary layers are known to undergo a highly
nonlinear transition process. In low-disturbance environments, the primary instability
of these flows consists mainly of stationary streamwise vortices that modify the
mean velocity field and hence the stability characteristics of the boundary layer.
The result is amplitude saturation of the dominant stationary mode and strong
spanwise modulation of the unsteady modes. Breakdown is not caused by the primary
instability but instead by a high-frequency secondary instability of the shear layers
of the distorted mean flow. The secondary instability has been observed in several
previous experiments and several computational models for its behaviour exist. None
of the experiments has been sufficiently detailed to allow either model validation or
transition correlation. The present experiment conducted using a 45◦ swept wing in
the low-disturbance Arizona State University Unsteady Wind Tunnel addresses the
secondary instability in a detailed fashion under a variety of conditions. The results
reveal that this instability is active in the breakdown of all cases investigated, and
furthermore, it appears to be well-described by the computational models.

1. Introduction
Understanding laminar-to-turbulent transition of crossflow-dominated swept-wing

boundary layers represents a challenging problem of significant technological
importance. The primary instability of these boundary layers originates from the
inflectional velocity profile of a secondary flow called crossflow. Crossflow exists
due to the combined influences of sweep and pressure gradient that generate curved
inviscid streamlines at the boundary-layer edge. Inside the boundary layer the velocity
is reduced but the pressure gradient is unchanged relative to the external flow, and
the resulting imbalance produces crossflow perpendicular to the inviscid streamline,
towards its centre of curvature. A schematic of the streamwise and crossflow velocity
components is given in figure 1. Because the unstable component of the basic flow
is perpendicular to the inviscid streamlines, the instability is primarily manifested as
vortices oriented within a few degrees of the streamwise direction. Linear stability
theory indicates that both stationary and travelling disturbances are unstable but that
travelling waves are the most amplified. However, because the initial amplitudes of
stationary waves are much stronger than those of travelling waves under conditions of
low turbulence intensity, and because of the ability of the stationary waves to produce
a strong integrated disturbance, stationary waves usually dominate transition in free-
stream environments characteristic of flight.

The presence of amplified stationary vortices is critically important for the stability
behaviour of crossflow boundary layers. Despite being rather weak, the integrated
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Figure 1. Crossflow boundary-layer velocity profiles.

effect of the steady v′, w′ velocity disturbances produces very significant mean-flow
distortion. The result is saturation of the primary instability at 10% to 30% amplitude.
The distortion of the mean flow stabilizes the primary disturbance. This primary-
instability behaviour has been the subject of very intense study over the past fifteen
years and is now very well-understood. The principal experimental work of this period
was carried out by Saric and coworkers at the Arizona State University Unsteady
Wind Tunnel using a swept-wing model and by Bippes and coworkers at DLR in
Göttingen using a swept flat plate and an external pressure body. A historical review
of the crossflow problem is given by Reed & Saric (1989) and reviews of more recent
developments are by Bippes (1999) and Saric, Reed & White (2003). Other related
reviews are by Kachanov (1996), Arnal (1997), Crouch (1997), Herbert (1997a ,b), and
Reshotko (1997).

Although the primary instability is well-understood, the process by which the
saturated vortices produced by this instability break down and lead to turbulence
is not nearly as well-documented. What is observed in stationary-wave-dominated
transition experiments is that, at some point aft of where the vortices saturate,
breakdown to turbulence occurs very rapidly along a jagged front. This behaviour
is particularly well-illustrated in flow-visualization studies such as that by Dagenhart
& Saric (1999). These studies suggest that the final stage of transition occurs over a
very short streamwise distance and that turbulence originates at fixed, distinct points
in the boundary layer from which it spreads in a characteristic wedge pattern.

The scenario that most is likely to describe saturated-vortex breakdown is that the
distorted mean flow produced by these vortices includes very strong and inflectional
shear layers and thus becomes unstable to secondary instabilities. These instabilities
grow to large amplitudes over a very short streamwise distance and lead to breakdown
and turbulence. The first suggestion that this is the case was by Kohama (1987),
who predicted that this mechanism (previously observed by Kohama 1984, 1985)
in rotating-disk and cone boundary layers would be active in crossflow-dominated
swept-wing boundary layers as well. Hot-wire measurements performed on a swept
cylinder by Poll (1985) showed an intermittent velocity fluctuation at 17.5 kHz just
upstream of the transition location in a boundary layer whose most unstable travelling
crossflow waves were at 1.1 kHz. Poll attributed the high-frequency fluctuations to
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intermittent turbulence, but Kohama (1987) argued that these fluctuations were in
fact evidence of a high-frequency secondary instability.

To demonstrate that a high-frequency secondary instability is responsible for
breakdown in swept-wing flows, Kohama, Saric & Hoos (1991) used hot-wire and flow-
visualization studies to make a correlation between velocity-fluctuation spectra and
the stationary structures revealed by flow visualizations. That experiment featured
hot-wire scans taken at constant height, y, across a range of span locations. The
measurements obtained at x/c = 0.40 on a 45◦ swept wing at Rec = 2.66 × 106 showed
travelling crossflow wave activity at 350 Hz and a broad high-frequency peak at 3 kHz
(Rec being the Reynolds number based on chord, c). The spanwise scans showed that
the amplitude of each frequency band varied significantly over each wavelength of
the stationary disturbance and that the high-frequency disturbances grow rapidly
in the stream direction just upstream of breakdown. The experiment provided good
evidence that a secondary instability was active, but certain problems in the approach,
most notably the absence of any full-field scans in the y- and z-directions and poor
interpretations of the velocity-fluctuation spectra, meant that the results could not
be used to support a general theory regarding the destabilization of the stationary
vortices to secondary instabilities.

During the decade following the experiment by Kohama et al. (1991), there were
several computational approaches taken to understand the secondary instability, and
several experiments were performed that corrected many of the shortcomings of
the Kohama et al. (1991) experiment. The most recent computations of secondary
instability behaviour have been performed by Malik et al. (1999) using a two-
dimensional eigenvalue approach; Koch et al. (2000) and Janke & Balakumar (2000)
using a Floquet approach; and Högberg & Henningson (1998) and Wassermann &
Kloker (2002) using direct numerical simulations of the breakdown region. Earlier
computational efforts are described in those references, with an especially thorough
treatment provided by Koch et al. (2000). The consensus of these efforts is that once
the primary disturbance saturates, secondary instabilities are destabilized and grow
extremely rapidly. The computations identify many different secondary-instability
modes that are classified into two distinct categories based on the production
mechanism. Type-I, or z, modes are produced by the spanwise gradients of the
streamwise flow (i.e. ∂U/∂z) and are usually the most amplified and lowest frequency
modes of the secondary instabilities. Type-II, or y, modes are produced by wall-normal
gradients (i.e. ∂U/∂y), usually occur at higher frequencies than the type-I modes, and
have a lower growth rate. The type-I and type-II nomenclature was introduced by
Malik, Li & Chang (1996). This classification is generally applied by examining the
location of the fluctuations of a particular frequency band relative to the stationary
structure to identify the shear layer, ∂U/∂z or ∂U/∂y, that is the more important
production mechanism of the mode.

The experiments that followed the work by Kohama et al. (1991) were by Kohama,
Onodera & Egami (1996), who examined two-dimensional disturbance fields and
presented growth results of the secondary modes from a swept-flat-plate experiment.
That effort was followed by Kawakami, Kohama & Okutsu (1999), who presented
spectra, fluctuation-amplitude contour maps, and secondary-instability growth curves.
Additionally, Kawakami et al. (1999) used a speaker located below a small hole in the
plate to excite the flow at high frequencies and tracked the growth of the secondary
instabilities of particular frequencies. In another series of experiments by Lerche &
Bippes (1996) and Lerche (1996) at DLR, the secondary instability was observed
in boundary layers in which a combination of travelling and stationary primary
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disturbances was forced by variable leading-edge roughness. In those experiments,
secondary-instability fluctuations were only observed for certain combinations of
the travelling and stationary primary waves, suggesting that under some conditions
neither the stationary nor travelling primary-instability waves are sufficiently strong
to destabilize the secondary instability, but that superposition of both is capable of
producing sufficient mean-flow deformation to destabilize the secondary instability
for certain phase ranges of the superposition.

The experiments described above are in general agreement with the computational
results. However, there has not yet been an experiment that provides a comprehensive
examination of secondary-instability behaviour under a variety of carefully controlled
conditions that is suitable for computational validation. It is the objective of the
present work to provide detailed measurements of the secondary instability with
particular attention paid to the correlation of secondary-instability behaviour and
the underlying mean-flow structure. The objective is to validate the computational
approaches and to provide additional data that can be incorporated into a crossflow
transition prediction scheme. The facility, model, and approach used in the experiment
are described in detail in § 2, results of the secondary-instability measurements are
given in § 3, and conclusions are discussed in § 4.

2. Experimental setup and measurement techniques
2.1. Wind tunnel and swept-wing model

The present experiment is the last of a series at the ASU Unsteady Wind Tunnel
involving the stability of crossflow-dominated swept-wing boundary layers. It is to
the great advantage of the current work to have inherited much of the approach and
physical setup from the previous experiments of Dagenhart & Saric (1999), Radeztsky,
Reibert & Saric (1999), Reibert et al. (1996), Saric, Carrillo & Reibert (1998), and
Chapman et al. (1998). However, the swept-wing model used in all of the previous
experiments has been replaced with a new model that incorporates a modular leading
edge and provides a somewhat more advantageous pressure contour. Both swept-wing
models share a design philosophy that has its origins with the work of Dagenhart
& Saric (1999). The idea is to create an experimental platform that captures all of
the essential features of a swept wing that undergoes crossflow-dominated transition
and yet provides the simplest possible experimental and computational problem. If
all of the important physics are included in the experiment and good agreement
with computations is achieved, then the validated computations can be used with
confidence to obtain results with more realistic operating conditions. This implies
that, despite its additional complexity, a swept wing is preferable to a swept plate
because wings provide surface curvature, and the results of nonlinear parabolized
stability equation (NPSE) calculations by Haynes & Reed (2000) indicate that even
though the curvature is quite small, it is an essential element for correctly predicting
stationary-mode growth rates. The experimental model is not tapered, so a spanwise-
uniform basic state can be established, greatly simplifying both the experiment and
the stability calculations. Taper could be included in stability calculations, of course,
but if those calculations indicated that taper influences the stability behaviour, that
discovery would require a different model for validation. Without an indication that
this could occur, and if so, for what parameter range, there is no reason to make the
experiment more complicated than necessary.

The setup must provide boundary layers that are sufficiently thick to permit
relatively easy and well-resolved boundary-layer velocity measurements and simul-
taneously provide sufficient crossflow to cause transition. These are contradictory
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Figure 2. Airfoil shape, suction-side pressure distribution, and surface pressure
measurements for the ASU(67)-0315 airfoil at Rec = 2.4 × 106 and −3◦ angle of attack.

requirements because thick boundary layers can be achieved by restricting the
experiment to low Reynolds numbers, but at too low a Reynolds number the instability
is not strong enough to produce transition. One means of improving the prospect
for strong crossflow and a thick boundary layer is selecting a pressure gradient that
locates the pressure minimum as far aft as possible, permitting the boundary layer to
develop over the longest possible distance without becoming unstable to Tollmien–
Schlichting (T–S) waves. Crossflow is also enhanced by making the pressure gradient
as strong as possible. Although this means that strong negative lift is preferable,
experience at the Unsteady Wind Tunnel has shown that the wall liners used to
maintain spanwise-uniform flow are difficult to construct and maintain when there is
strong lift. The liner design and construction techniques are thoroughly documented
by Dagenhart & Saric (1999) and Radeztsky (1994). Therefore, a pressure contour
that provides a strong pressure gradient with a late pressure minimum at zero lift is
the optimum configuration. Enhanced crossflow can also be produced by increasing
the sweep angle of the wing. However, exceeding 45◦ sweep is impractical for the
hot-wire traverse system.

The wing used in the current work, designated the ASU(67)-0315, was designed
by M. S. Reibert around these principles. Its chord length parallel to the free stream
is 1.83 m; its sweep angle is 45◦; and its zero-lift angle is −3◦. The wing’s cross-
section in a plane perpendicular to the leading edge is shown in figure 2. This
figure also shows the theoretical inviscid pressure contour. Pressures are computed
using a panel code that includes the influence of the wind-tunnel walls but not
displacement thickness growth. After the wing was installed, a keyway in its mounting
shaft was found to have been machined incorrectly. Because of this problem, the
wing is not at the −3◦ design position during the experiments, but instead is
at −3.4◦.

The extent to which the model and liners produce the conditions predicted by the
inviscid code can be assessed by comparing the pressure measured using the surface
pressure taps to the pressure distribution that is shown in figure 2. The measurements
are for the actual −3.4◦ angle of attack, but the computed curve reflects the design
angle, −3◦, for which the liners were constructed. (Results for Rec = 2.0 × 106 and
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Rec = 2.8 × 106 are nearly indistinguishable from those given here.) The actual pressure
is higher than the predicted value at all points upstream of 90% chord. However,
the pressure gradient – the feature that affects boundary-layer stability – is very
close to what is predicted by the panel code throughout the region of interest for
the experiments, 0.30 <x/c < 0.60. Furthermore, there is not an appreciable pressure
difference across the span in this region.

The pressure results are quite similar to those obtained in previous ASU experiments
(see figure 2 of Reibert et al. 1996) and indicate that the angle-of-attack defect,
while unfortunate, does not produce any grossly incorrect behaviour. This should
not be taken to mean that the transition location is insensitive to small angle-of-
attack changes. A setting of −3◦ would certainly produce slightly different results
than those described below. Instead, it appears that the wall liners are not so
sensitive to angle-of-attack variations that the 0.4◦ error produces significant spanwise
non-uniformity. The role of the wall liners is to ensure spanwise-uniform flow and
this appears to have been achieved. This result along with the exceptionally good
agreement between Reibert et al.’s (1996) experimental results and the computations of
Haynes & Reed (2000) indicates that the experiment can proceed with these pressure
contours.

The ASU(67)-0315 wing was constructed to provide a flexible test platform on
which a variety of boundary-layer transition-control experiments can be conducted.
To this end, the leading edge of the wing is not continuous, but includes a
leading-edge slot in the middle third of the span that extends to approximately
20% chord. This slot accepts modular leading-edge inserts that can provide any
sort of boundary-layer treatment. The leading 10% chord of the main body of
the model is a solid aluminium piece, hand polished to a 0.2-µm-r.m.s. surface
finish. The leading-edge insert used for the current work is constructed of a solid
aluminium piece machined to match the contour of the main body of the wing
and to provide an exact fit at the junction between the insert and the main body.
The surface of the insert is hand polished to the same 0.2-µm finish as the main
body’s leading edge. The remainder of the main body consists of an aluminium
frame and foam core covered by fibreglass. Because of the large spanwise extent of
the insert, its corners (which are sources of small-scale roughness) are far enough
from the measurement region so the crossflow waves generated there do not affect
the measurement region. This is confirmed with a naphthalene flow visualization
test.

The ASU Unsteady Wind Tunnel is a closed-loop, low-speed, atmospheric-pressure
facility designed to provide the best possible conditions for conducting transition-
to-turbulence experiments. With this in mind, quite a significant investment has
been made in high-quality screens, honeycomb, settling chamber, contraction cone,
turning vanes, and vibration-isolation strategies. Details of the facility’s design and
capabilities are given by Saric (1992). The baseline operating point for the current
experiment is Rec =2.4 × 106, and for the temperatures at which the tunnel operates,
this corresponds to free-stream speeds between 22 and 23 m s−1. The baseline Reynolds
number provides the best combination of experimental parameters. Breakdown occurs
near 50% chord, in the middle of the traverse’s range, and the boundary layer is
reasonably thick (3 mm) in the transition region, so well-resolved boundary-layer
profiles are easy to obtain. Wind-tunnel heating is a concern at this speed because
the tunnel does not include a heat exchanger, but the heating is not so severe as to
be unmanageable. The free-stream-turbulence level that is achieved in the test section
is exceptionally low due to the attention that is paid to turbulence-control devices
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and vibration control. At 20 m s−1, the turbulence level u′/U∞ is less than 0.02%
(using a 2Hz high-pass filter). Both the v′ and w′ fluctuation levels are less than half
that of u′. The sound level in the test section at the same conditions is below 85
dB. Because Deyhle & Bippes (1996) found that stationary waves dominate crossflow
boundary layers only below T u =0.15%, the low turbulence level of the Unsteady
Wind Tunnel is essential for conducting a stationary-wave-dominated experiment.
Because the tunnel does not feature a heat exchanger, the speed is adjusted regularly
to maintain a constant chord Reynolds number and the hot-wire calibration includes
a sophisticated temperature compensation.

A high-precision, computer-controlled traverse mechanism is situated outside the
front wall of the test section with access to the suction side of the wing. The resolutions
in the various coordinate directions are �X = 12 µm (stream direction), �Y = 0.7 µm
(wall-normal direction), and �Z =1.3 µm (unswept-span direction). The traverse is
designed so that only the sting extends into the test section; the traverse mechanism
is enclosed in a pressure box outside the test section. The sting is designed to allow
the boundary-layer hot-wire probe support to be rotated toward the wing so that the
sting itself need not be close to the wing. Additionally, the boundary-layer hot-wire
can be rotated about the probe-support axis so that the hot-wire can be positioned
parallel to the wing surface.

2.2. Measurement techniques

The instruments used to obtain the mean- and fluctuating-velocity measurements
are constant-temperature hot-wire anemometers. Although a variety of more modern
systems exists, hot-wires provide a number of features that make them ideal for
boundary-layer-stability measurements. These include excellent spatial resolution
in the wall-normal direction and the ability to high-pass filter and amplify the
anemometer output so that accurate measurements of small, fluctuating-velocity
components – exactly the feature of interest in stability measurements – can be
effectively measured. There is always some concern that introduction of a flow-
intrusive device such as a hot-wire can change the behaviour of a system being
studied. This is especially true for stability experiments where very small influences
can become quite significant. For the present experiment, this need not be a concern
for several reasons. First, extensive naphthalene-flow-visualization experiments of the
previous investigators (Dagenhart & Saric 1999; Radeztsky et al. 1999; Reibert et al.
1996) show that hot-wire measurements correspond exactly to behaviour indicated
by the flow visualizations, for which no intrusive devices exist. Second, there is
excellent correlation between the experimental results of Reibert et al. (1996) and
the computational results of Haynes & Reed (2000), so there is additional reason
to believe that the boundary-layer behaviour is unchanged by the presence of a
boundary-layer hot-wire. Finally, in the breakdown region the instability mechanism
is driven by an inviscid instability that does not depend on the pressure gradient (the
feature of the flow that would be modified by the presence of the hot-wire and sting)
but instead depends on the shear layer that is established by the stationary crossflow
waves well upstream of the transition location.

Fluctuating-velocity components are the principal interest of this experiment, but
the correlation of the fluctuating components to the underlying mean flow is also
important. This means that a careful mean-flow calibration procedure is required
that must include an accurate temperature compensation. The calibration procedure
is performed daily to minimize long-term variations in the hot-wire response. The
calibration approach is described in detail by White (2000).
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Stability calculations are most frequently performed using a streamline-oriented
coordinate system, but physical limitations of the hot-wire traverse system require that
measurements be obtained using a combination of test-section-oriented and model-
oriented coordinate systems. In the test-section, or global, system, the coordinate
directions are denoted X parallel to the free-stream-flow direction, Y normal to
the front wall of the test section, and Z in the unswept-span direction. The global
velocities are (u, v, w). The model-oriented system is defined by x perpendicular to
the leading edge, y perpendicular to the chord line, and z parallel to the leading
edge. Here the velocities are denoted (un, vn, wn). The various systems are shown in
figure 3. The coordinate definitions are consistent with the earlier Unsteady Wind
Tunnel crossflow experiments cited previously. In this experiment, hot-wire data are
always acquired in the (Y, z) plane and the wire is oriented to measure the (u, v)
velocity. This orientation means that velocities in the streamline-oriented coordinate
system, (ut , vt , wt ), are measured as projections as depicted in figure 4.

The secondary-instability experiment is quite straightforward. First a stationary,
spanwise-periodic primary disturbance field with an amplitude and wavelength that
is uniform across the span is established, and second, the evolution of the fluctuating
velocities associated with a particular stationary structure is measured. Following
Reibert et al. (1996), periodic roughness is applied at x/c =0.025, near the crossflow
neutral point, to establish uniform disturbances. Because of the uniformity, only a
single stationary structure need be interrogated for each case and its behaviour is
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taken to be representative of the behaviour of the entire boundary layer.† Following
the notation used by Reibert et al. (1996) and Saric et al. (1998), the artificial
roughness arrays are designated with the notation

[
k|λ

]
, where k is the amplitude of

the roughness in microns and λ is the spanwise wavelength in millimetres. During the
experiment, λ is measured parallel to the leading edge, not exactly perpendicular to
the crossflow-vortex axis.

Full-field streamwise-velocity scans are used for the secondary-instability
measurements. These scans provide mean- and fluctuating-velocity data on a (Y, z)
grid of points at a particular x/c location. Typically the spacing in Y is 200–300
µm and the spacing in z is 1.0 or 1.2 mm. This provides 15–20 points in the Y -
direction from the surface to outside the boundary layer and 12–15 points in the
z-direction, enough to span somewhat more than one crossflow wavelength. Full-field
scans begin with a boundary-layer-profile measurement to locate the wing’s surface
to within several microns at the starting z position. As the scans are performed, both
mean-flow and fluctuating-velocity data are obtained.

The interest here is in the process by which the instabilities grow and turbulence
appears, so the fluctuations are of particular interest. At each measurement position
the mean output of the hot-wire anemometer is obtained in the usual way and the
fluctuating output is obtained by high-pass filtering (typically at 20 Hz) and anti-alias
filtering. After filtering, the voltage output is amplified so that it covers a ±5 V range
utilizing the full range of the data-acquisition electronics.

The mean-flow data are used to determine the stationary-mode amplitude growth.
This is done by considering the spanwise root mean square (r.m.s.) of the stationary
disturbance, r.m.s. [(U − Umean)/Uedge]. The amplitude of the stationary-disturbance
mode is represented by the integral of the mode-amplitude curve taken from the
surface, Y= 0, to the boundary-layer edge. This measure is convenient and robust
for experimental data both because it includes the contribution of all data and thus
is resistant to errors at individual points and because there is no ambiguity that
results from arbitrary definitions such as a point in the flow at which to evaluate the
amplitude.

Power spectra of the fluctuations provide the most useful data regarding instability
growth of travelling modes. To compute these spectra, the fluctuations are processed
using a fast Fourier transform. A Bartlett window is employed to reduce leakage
and averaging is used to reduce the variance of the power spectrum. Long samples
are obtained that allow 10–20 averages to be performed while maintaining spectral
resolution of about 10 Hz. The power-spectrum normalization is such that the sum of
the discrete power components is equal to the sum of the discrete velocity fluctuations
squared; Parseval’s theorem is preserved in the discrete sense. To compute the r.m.s.
amplitude of a particular frequency band, the components that lie in the band are
summed, and the square root of that sum represents the r.m.s. velocity fluctuations
for that band.

To obtain the instability growth rates of the travelling-wave modes, an integration
over the whole field is required rather than an amplitude maximum or the amplitude
at a particular location. As will be apparent below, the spatial distributions of the

† There is a small degree of non-uniformity across the span that results in a maximum variation
of the breakdown location of approximately 5% chord. Therefore, the results presented in the
following section should be interpreted as being representative of the breakdown behaviour, but
they should not be taken to mean that the certain phenomena that are observed occur precisely at
the chord locations indicated across the entire span.
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modes vary through the boundary layer, so to obtain an accurate picture of the
instability growth rates, the velocity-fluctuation amplitudes are integrated over the
entire field to give the total mode amplitudes. Without considering changes in the
spatial extent of an instability mode, much of the growth in its energy content could
be lost as more of the area participates. Because the stationary distortion is so large
and such strong spanwise periodicity is observed in the instability modes, simply
finding the maximum or the amplitude at a certain point would not yield correct
amplitude growth data. The integration of each mode is carried out over 12 mm of
span, one stationary crossflow wavelength measured parallel to the leading edge. The
integration in Y is carried out to the edge of the measurement region because all of
the fluctuations go to zero at the top of the range.

The secondary-instability measurements presented here consist of five cases. The
first of these is performed at Rec = 2.4 × 106 with an 18-µm-high, 12-mm-spaced
roughness array at x/c = 0.025,

[
18|12

]
roughness. This first case serves as a baseline

for comparison with the other runs and is presented in the greatest detail. It will be
shown that despite the new swept-wing model, this case is sufficiently similar to the
behaviour observed previously to be considered a continuation of the experiments
of Reibert et al. (1996), whose baseline was Rec = 2.4 × 106 with

[
6|12

]
roughness.

The larger roughness amplitude used here is a single layer of the smallest roughness
elements that could be obtained for this experiment; the 6-µm elements used by
Reibert et al. are no longer available. Because saturation occurs prior to breakdown,
it is thought that the appearance and growth of the secondary instability may not be
strongly affected by the initial amplitude.

To determine whether the secondary instability is affected by the roughness
amplitude notwithstanding the saturation behaviour, a second case is performed
at Rec = 2.4 × 106 using three layers of artificial roughness to give a

[
54|12

]
array. To

determine the behaviour with weakly subcritical forcing, the third case is performed
with

[
54|12

]
roughness at Rec = 2.0 × 106. Here the most amplified stationary

wavelength is about 13.5 mm. Similarly, the behaviour with weakly supercritical
roughness forcing is obtained from a fourth case performed with the same

[
54|12

]

roughness at Rec =2.8 × 106. The higher Reynolds number means that the most
amplified stationary crossflow wavelength is somewhat less than 12 mm. Spanwise
spectra of the mean flow for this Reynolds number indicate that the most amplified
wave is about 10.2 mm. Finally, several tests are performed with enhanced free-stream
acoustic and turbulent fluctuations to assess whether varying these features can have
an impact on the behaviour of the secondary instability.

3. Secondary-instability results
3.1. Baseline configuration

The baseline configuration is Rec = 2.4 × 106 with
[
18|12

]
roughness situated at

x/c = 0.025. At this Reynolds number the most amplified stationary crossflow
wavelength is about 12 mm (measured parallel to the leading edge), so the roughness
spacing forces the most amplified wavelength. The first measurement station is at
x/c = 0.30. This is the first position for which the quantity ∂U/∂Y equals zero
somewhere inside the boundary layer, indicating that significant mean-flow distortion
has developed. We first examine the boundary-layer velocity profiles spanning a
single wavelength of the stationary vortex. Figure 5 shows a collection of mean-
flow velocity profiles and the spanwise mean of the individual profiles. The r.m.s.
curve is the stationary-disturbance mode shape. For this location, it appears that
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z = 122mm.

although there is some distortion of the mean flow, the disturbance evolution may
still be consistent with linear stability theory because the r.m.s. curve has not yet
developed the upper lobe that accompanies the advent of significant nonlinearities.
Reibert et al. (1996) explain that the development of an upper lobe is due to the
rollover phenomenon that brings low-momentum fluid into the upper part of the
boundary layer signalling the onset of significant mean-flow distortion, and hence,
nonlinear disturbance evolution. Figure 5 also includes contours of streamwise mean
velocities. In this plot the streamwise flow is into the page and the crossflow velocity
is from right to left. Viewed from this orientation, the stationary vortex rotates in the
clockwise sense. The dark shades are low-momentum regions and the light shades are
high-momentum regions.

The spatial and spectral distributions of velocity fluctuations within the stationary
structure are particularly important for understanding the breakdown of the boundary
layer. Figure 6 shows the velocity-fluctuation spectra at several points on a wall-
normal (constant-z) line. Although the spectra at this location are low amplitude,
several features are detected. First, the high-amplitude disturbances between 150
and 200 Hz are the most amplified travelling crossflow waves. Second, there are
fluctuations near 800 Hz. These fluctuations are most prominent in the region
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Figure 7. 200Hz velocity-fluctuation r.m.s. distribution, Rec = 2.4 × 106,
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]
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x/c = 0.35, 200Hz (i.e. 100–300Hz) bandpass. Lines are 10% contours of the maximum in this
band.

of strongly decelerated wall-normal velocity profiles and correspond to a non-
dimensional frequency F = 2πf ν/U 2

∞ × 106 = 140. Both of these factors suggest that
the 800 Hz fluctuations, although localized, may be related to a streamwise instability
similar to T–S waves. Third, the lowest frequencies near 30 Hz are associated with
unavoidable low-level background fluctuations of the wind tunnel. The amplitude fall
off below 10 Hz is due to the high-pass filter applied as part of the hot-wire signal
conditioning. Although the power density (signal power per Hz) at these frequencies
is high, it should be noted that as a band, the low frequencies contain relatively little
power because the band quite is narrow.

Moving to x/c = 0.35, the earliest stage of nonlinear evolution is apparent in the
mean flow; a contour plot obtained here would show that overturning of the low-
momentum upwelling is well under way. The spectra are quite similar to what is
observed upstream, but at this location there is significantly more variation across
the span. Figure 7 shows that the 200 Hz travelling-wave fluctuations are strongly
modulated due to an interaction with the stationary disturbance. In fact, it may
not be appropriate to refer to these fluctuations as travelling crossflow waves once
the modulation becomes so severe. Fischer & Dallmann (1991) predicted this effect
using Floquet theory and referred to it as a secondary instability. Malik, Li &
Chang (1994) also predicted this effect using an NPSE approach and argued that
the modulation is simply a result of the nonlinear interaction of the stationary and
travelling disturbances that becomes more pronounced as the disturbance amplitudes
increase. The experimental evidence supports the notion of a continuous progression
from the original, spanwise-uniform state to the state seen in figure 7, and therefore,
this effect is better described as a modulation of the primary travelling disturbance
modes than as a secondary instability.

It is not obvious that this experiment should be capable of detecting these
fluctuations as distinctly as they are observed here. The primary disturbance consists
of streamwise vorticity or v′, w′ velocities and the hot wire is situated to detect u′, v′

fluctuations. Furthermore, because the streamwise U component is large relative to
the fluctuations, the hot wire is more capable of detecting the u′ fluctuations than
the v′ fluctuations that simply change the velocity vector’s direction but do not
significantly change its amplitude. The fluctuating velocity detected by the hot wire
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Figure 8. Mean-flow velocity contours, Rec = 2.4 × 106,
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contour lines at U/Uedge = 0.10, 0.20, . . . , 0.90.
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Figure 9. Fluctuating-velocity spectra, Rec = 2.4 × 106,
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]
roughness, x/c = 0.40,

z =94 mm.

is [(U + u′)2 + v′ 2]1/2 − U , which is approximately equal to u′ for u′, v′ � U . What
this analysis does not consider, however, is the fact that the inviscid streamlines and
crossflow vortices are inclined relative to the X-axis. This means that the hot wire
actually detects a component of the w′ fluctuations that appears with mean velocity,
U , in the simple analysis presented above. This arrangement is shown schematically
in figure 4.

At x/c = 0.40, the stationary-mode amplitude is substantially increased (figure 8).
Here, spectra at multiple span locations show evidence of a high-frequency mode.
Spectra from the centre of the upwelling region (figure 9) show that a broad band
of fluctuations extends from 1 kHz to 5 kHz, with a maximum amplitude somewhat
above 3 kHz. At all span stations, the 200 Hz fluctuations are also strongly amplified.

The spatial distribution of the 3.0 kHz fluctuations (figure 10) shows that these
fluctuations lie along the shear layer to the left of the upwelling region and extend
over much of the span of the stationary structure. The high frequencies represent a
secondary instability in the strictest sense because neither the high-frequency band nor
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Figure 10. 3.0 kHz velocity-fluctuation r.m.s. distribution, Rec = 2.4 × 106,
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]
roughness,

x/c = 0.40, 200Hz bandpass. Lines are 10% contours of the maximum in this band.

the spatial location at which the fluctuations exist are associated with an instability
of the undistorted mean flow. The location at which the 3.0 kHz fluctuations occur
is not what was reported by Kohama et al. (1991) but instead agrees with the
computations of Malik et al. (1999) and Koch et al. (2000) and with measurements
on swept plates by Lerche (1996) and Kawakami et al. (1999). The location of the
3.0 kHz mode relative to the mean-flow distribution indicates that its production is
probably dominated by the spanwise gradient of the streamwise velocity, ∂U/∂z. This
is what Malik et al. (1996) termed a mode-I secondary instability. The shape and
extent of this mode reinforce the need for full-field as opposed to single-line scans to
adequately understand the secondary instability. Obviously, the choice of wall offset,
Y , for a single-line scan is very important for the relationship of the mode-I amplitude
distribution to the underlying mean flow.

Because the secondary instability is situated where it is, aligned on the high-velocity
shear layer along the left edge of the low-momentum upwelling, it appears that this
is an inviscid, inflection-point-driven instability. As such it is manifested as vortex
lines that lie in the (Y, z)-plane and convect in the stream direction. Therefore, a
visualization of the secondary instability would consist of rolls that wrap along the
left side of and extend above the stationary structure. This is exactly what is observed
in flow-visualization experiments of rotating-disk boundary layers by Kohama (1984,
1985), in a swept-plate boundary layer by Kohama & Egami (1999), and in the recent
direct numerical simulation (DNS) studies by Wassermann & Kloker (2002).

The distribution of 200 Hz fluctuations continues to diverge from what is predicted
for travelling crossflow waves by linear theory. At x/c = 0.40, there is almost no
significant activity in this band in the high-velocity regions that are being drawn into
the surface by the stationary vortex, and the fluctuations that were once distributed
along the surface as the travelling crossflow waves are lifted by the vortex in the
low-momentum upwelling region. The behaviour of this mode is certainly worthy
of much more detailed attention. However, to do it justice would require a different
technique than is used here. Because it is (or at least starts as) a v′, w′ disturbance, if
one wishes to understand its evolution unambiguously, a multi-element hot-wire probe
should be used to obtain the projection of the velocity field onto the plane parallel to
the surface instead of simply the projection onto the single-element wire used here.
With the data that are available now, nothing more conclusive can be said about this
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Figure 11. Mean-flow velocity contours, Rec = 2.4 × 106,
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roughness, x/c = 0.44,

contour lines at U/Uedge = 0.10, 0.20, . . . , 0.90.
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Figure 12. Fluctuating-velocity spectra, Rec = 2.4 × 106,
[
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]
roughness, x/c = 0.44,

z =81 mm.

mode. This does not prevent us from moving forward with the high-frequency mode.
Because this mode lies along a streamwise shear layer, the disturbances are u′, w′ (or
u′, v′, depending on the particular location being considered) and a single hot wire is
sufficient to obtain good data.

At x/c = 0.44, the mean-flow behaviour remains the same as before (see figure 11).
The fluctuation spectra show large secondary instability amplitudes both at the mode-
I frequency, 3.0 kHz, and now for the first time at a higher frequency, 6.1 kHz. To the
left of the upwelling region, the spectra show only a hint of this higher-frequency mode.
However, at z =81 mm, the centre of the upwelling region (figure 12), the amplitude
of the new 6.1 kHz mode is quite dramatic. In the overturning region, the spectra
obtained at z = 84 mm do not show evidence of the highest frequency mode and
show relatively low amplitudes for the 3.0 kHz mode. It is interesting to note that
the overturning location, z =84 mm, is exactly the location at which a secondary
instability might be expected based solely on the U (Y ) profiles. These profiles include
multiple inflection points in regions of high shear stress and high velocity at the top of
the vortex structure. However, at this location there is almost no secondary-instability



290 E. B. White and W. S. Saric

5

4

3

2

1

0
76 78 80 82

z (mm) z (mm)
84 86 88

5

4

3

2

1

0
76 78 80 82 84 86 88

Y
 (

m
m

)
(a) (b)

Figure 13. (a) 3.0 kHz and (b) 6.1 kHz velocity-fluctuation r.m.s. distribution, Rec = 2.4 × 106,[
18|12

]
roughness, x/c = 0.44, 200Hz bandpass. Lines are 10% contours of the maximum in

each band.
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Figure 14. Mean-flow velocity contours, Rec = 2.4 × 106,
[
18|12

]
roughness, x/c = 0.46,

contour lines at U/Uedge = 0.10, 0.20, . . . , 0.90.

activity. The spatial distributions of the 3.0 kHz and 6.1 kHz modes are given in
figure 13. These plots show that the two modes are spatially coincident, so it is only
because of their frequency separation that they can be recognized as distinct modes.

The situation at x/c = 0.45 is quite similar to that at x/c =0.44. The fluctuation
spectra show that the 3.0 kHz and 6.1 kHz modes continue to grow rapidly, now with
points at nearly half the span locations participating. The spatial distribution of the
6.1 kHz peak has matured significantly beyond x/c = 0.44; it now lies clearly along
the shear layer to the left of the low-momentum upwelling zone coincident with the
location of the 3.0 kHz activity shown previously, whereas before it was a somewhat
ambiguous blob (see figure 13). Despite the fact that the 6.1 kHz mode is located
at the same position as the 3.0 kHz mode and is at almost twice its frequency, a
comparison of the modes’ growth rates given below indicates that the 6.1 kHz mode
is not a harmonic of the 3.0 kHz mode.

Finally, at x/c =0.46, localized breakdown occurs. Figure 14 shows that much
of the fine structure of the mean flow has been eliminated. The low-momentum
upwelling no longer has a narrow apex; instead this region is wider and flatter. The
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Figure 15. Fluctuating-velocity spectra, Rec = 2.4 × 106,
[
18|12

]
roughness, x/c = 0.46,

(a) z =72mm and (b) z = 78 mm.

region of low-momentum fluid high in the boundary layer still extends over nearly
the whole stationary structure’s length, but now the lowest velocities in this feature,
U < 0.7Uedge, are gone. What is most important in figure 14, however, is the velocity
gradient near the wall to the left of the low-momentum upwelling. This region looks
quite different from previous cases; in particular the contour lines are now very close
together, indicating that the wall shear here is quite high.

What are responsible for these changes in the mean flow are of course the much-
increased velocity fluctuations brought on by breakdown to turbulence. Figure 15
shows fluctuation spectra at z = 72 mm, the high-wall-shear region to the left of the
low-momentum upwelling zone and at z = 78 mm. The spectra at z = 72 mm include a
flat, very high-amplitude, turbulent spectrum at Y = 0.8 mm, the position in the figure
closest to the wall. The spectra higher in the boundary layer are similar, but in these
curves some evidence of the 3.0 kHz mode remains. The situation is much the same
for z =75 mm, the centre of low-momentum upwelling, except that the spectrum of
the point closest to the wall shows a somewhat lower fluctuation level, especially
beyond 2 kHz. This position is below the zone affected by the secondary instabilities
at the upstream stations and below the travelling-crossflow fluctuations that exist
throughout the preceding development, just as they appeared in figure 7. The spectra
for z = 78 mm that are shown in figure 15 are not turbulent; they maintain distinct
spectral features associated with travelling-crossflow fluctuations near 200 Hz and the
3.0 kHz mode-I secondary instability despite their high amplitude.

In figure 16 the total velocity-fluctuation r.m.s. distribution is plotted. It is evident
from this figure that the overall energy distribution is spatially coincident with the
3.0 kHz and 6.1 kHz modes. The rapid growth of these modes just prior to breakdown
and the spatial location of the subsequent fluctuation maximum make it quite obvious
that the secondary instability is the route to breakdown for this flow. Notice that
this distribution shows somewhat more activity close to the wall between z = 71 and
73 mm than do the 3.0 kHz distributions upstream. This has an important consequence
in that it helps to explain the high wall shear in this region; the turbulent fluctuations
promote enhanced mixing of the high-momentum fluid with the low-momentum fluid
near the wall, resulting in increased shear. As a result, the behaviour of the turbulent
wedges that indicate breakdown in naphthalene flow-visualization experiments of
Dagenhart & Saric (1999) is now clear. The upstream tips of the wedges appear at
the points where the mode-I instability makes its closest approach to the wall on
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Figure 16. Total velocity-fluctuation r.m.s. distribution, Rec = 2.4 × 106,
[
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]
roughness,

x/c = 0.46, 20Hz–8.0 kHz bandpass. Lines are 10% contours of the maximum r.m.s.
fluctuations.

the left side of the low-momentum upwelling location. Understanding the location
and amplitude of boundary-layer features relative to the associated wall shear in this
manner is essential if one is to conduct an experiment using only wall measurements
with hot films or some other technique as would be required in a flight experiment.
In particular, consider the quantitative transition-detection technique developed by
Chapman et al. (1998) using hot films. In this approach, the hot films are aligned in
an array along a particular stationary structure and must be positioned within the
structure to detect the secondary-instability fluctuations and the high shear of the
turbulent wedge. With the data presented here, it is now possible to correctly place
the sensors to achieve optimum performance with this technique.

It is not clear why these high-amplitude fluctuations appear as close to the surface
as they do just aft of breakdown. Comparing figure 16 to the upstream 3.0 kHz and
6.1 kHz distributions shows that while the maxima are located in the same region
of the stationary structure, the total fluctuation contours come much closer to the
surface than the individual mode contours that we have been tracking. One possibility
is that the small counter-rotating stationary vortex predicted by the computations
of Malik et al. (1994) and the DNS study of Wintergerste & Kleiser (1996) is of
sufficiently high amplitude to either participate in breakdown or transport fluctuation
energy closer to the wall in this region. This mechanism is not directly supported by
the present data and Wassermann & Kloker (2002) find that the vortex is quite weak,
so this possibility requires more investigation.

Downstream of the breakdown location we expect the stationary structure to
dissolve quickly in the face of the enhanced fluctuation levels. This is evident at
x/c = 0.47 in the mean-flow velocity contours of figure 17. This figure shows the
continuing breakup of the low-momentum zone high in the boundary layer and
the extension of the high-wall-shear zone. These trends continue at x/c = 0.48, the
last measurement station of the baseline case. For that final location, spectra 3 mm
to the left of, centred on, and 3mm to the right of the low-momentum upwelling
region are all nearly fully turbulent, with amplitudes decreasing away from the wall.
Spectra obtained 6 mm to the right of the low-momentum upwelling centre (half
the stationary-mode wavelength) still exhibit relatively low fluctuation levels as this
location has still not been contaminated by the spreading turbulent wedge.
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Figure 17. Mean-flow velocity contours, Rec = 2.4 × 106,
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roughness, x/c = 0.47,

contour lines at U/Uedge = 0.10, 0.20, . . . , 0.90.
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Figure 18. Velocity-fluctuation r.m.s. growth, Rec = 2.4 × 106,
[
18|12

]
roughness.

The growth of each mode is shown in figure 18. Each curve is normalized using the
amplitude at which it is first observed. The figure shows that the stationary disturbance
grows between x/c = 0.30 and x/c =0.40, but that downstream of x/c = 0.40, the
stationary disturbance is saturated. The saturation amplitude is 19% based on the
peak of the stationary r.m.s. curve. Throughout the chord range, the travelling-
crossflow amplitude grows slowly. Its development past x/c =0.45 is not plotted
because once the flow becomes turbulent, the spectral band that defines this mode,
100–300 Hz, contains significant fluctuation levels that are clearly not associated with
the same mode. The most important and dramatic features of this plot are the
3.0 kHz and 6.1 kHz mode curves. These appear in quick succession at x/c =0.40
and x/c =0.43, respectively. The 3.0 kHz mode does not amplify rapidly at first, but
starting at x/c = 0.42, it undergoes very rapid exponential growth until breakdown
at x/c = 0.46. It is rather curious that the 3.0 kHz mode exists for 2% chord before
undergoing rapid growth. One might think from this behaviour that the 2.9–3.1 kHz
band includes two distinct modes: a weaker early mode and the strongly amplified
mode that becomes unstable at x/c =0.42. This may indeed be the case, but if
so, it would be difficult or impossible to detect experimentally because the 3.0 kHz
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Figure 19. Mean-flow velocity contours, Rec = 2.4 × 106,
[
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]
roughness, x/c = 0.38,

contour lines at U/Uedge = 0.10, 0.20, . . . , 0.90.

fluctuations are always observed at exactly the same (Y, z) location, regardless of the
chord location. The 6.1 kHz mode is first detected at x/c = 0.43 and it undergoes
somewhat stronger growth than the 3.0 kHz mode. As mentioned above, the growth
rate of the 6.1 kHz mode is not twice that of the 3.0 kHz mode, meaning that the
6.1 kHz mode is not simply a harmonic of the 3.0 kHz mode, despite the fact that
they are spatially coincident. Rather, it appears that the 3.0 kHz and 6.1 kHz modes
are distinct.

3.2. High-amplitude-roughness configuration

With a fairly complete description of the secondary instability for the baseline case of
Rec = 2.4 × 106 with

[
18|12

]
roughness, we wish to understand the effect of roughness

amplitude on the secondary instability. To accomplish this we use a new configuration
that retains Rec = 2.4 × 106 but features

[
54|12

]
roughness. The results of Reibert

et al. (1996) show that if the stationary crossflow waves saturate (as they do here),
then the transition location is nearly independent of the roughness amplitude. The
implication for this work is that because the stationary crossflow disturbances are
saturated at 19% amplitude by x/c = 0.40 in the baseline configuration, increasing
the roughness amplitude will change neither the saturated stationary-mode amplitude
nor the transition location. Furthermore, one might expect that if these features are
unchanged, the behaviour of the secondary instability will be unchanged as well.

The stationary boundary-layer structure that is tracked for this case saturates
farther upstream than the structure in the baseline case, so the measurements begin
at x/c = 0.25. At x/c =0.34, the first indication of type-I secondary-instability activity
is observed near 3.0 kHz. By x/c = 0.37, there is evidence of 6.1 kHz activity. By
x/c = 0.38, this has grown to the extent that it can be extracted into a distinct mode
shape. The mean flow at x/c = 0.38 is shown in figure 19 and representative spectra
from z = 91 mm are shown in figure 20. What is striking about these spectra is that
the low-frequency fluctuations appear to be much more important in this case than
in the baseline configuration. The peak of the low-frequency spectrum is not of
significantly higher amplitude than what was observed before, but the amplified band
extends to significantly higher frequencies than were observed in the baseline case.
The distribution of 200 Hz fluctuations given in figure 21(a) is similar to what is
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Figure 21. (a) 200-Hz, (b) 3.0-kHz, (c) 6.1-kHz velocity-fluctuation r.m.s. distribution,
Rec = 2.4 × 106,

[
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]
roughness, x/c = 0.38, 200-Hz bandpass. Lines are 10% contours

of the maximum in each band.

observed with
[
18|12

]
roughness, but here there is the additional feature of a local

amplitude maximum to the left of the low-momentum upwelling location, situated
close to the surface at Y = 0.5mm.
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The 3.0 kHz distribution at x/c =0.38 (figure 21a) is about the same as those shown
previously. The 6.1 kHz distribution (figure 21c), however, is quite different from what
is observed in the baseline experiment. Here, the peak amplitude is not located at
the same point on the high-velocity shear layer as the 3.0 kHz mode. Instead, the
highest amplitude 6.1 kHz fluctuations are on the top of the overturning region, the
location with strong ∂U/∂Y gradients. This mode is different from what is observed
for

[
18|12

]
roughness and instead appears to be what Malik et al. (1996) term a

type-II secondary instability. It is also an inflectional instability, but now the energy
production is dominated by the ∂U/∂Y gradient and the u′, v′ fluctuation terms,
whereas the type-I instability is driven primarily by the ∂U/∂z gradient and the u′, w′

fluctuations. Figure 21 shows that there is 6.1 kHz activity in that part of the structure
where the 3.0 kHz activity is greatest, so there may be two separate modes at 6.1 kHz
that are simultaneously active.

The appearance of a type-I mode upstream of where a type-II mode is observed
is somewhat surprising in the light of computational results. Malik et al. (1999)
find that for the swept-wing geometry and disturbance amplitudes of Reibert et al.
(1996) (both of which are very similar to the present experiments) the most amplified
type-II mode has a higher growth rate than the most amplified type-I mode just
downstream of where both are destabilized. Only farther downstream does the type-I
mode’s growth rate equal that of the type-II mode. Other experiments observe that
higher-frequency disturbances appear downstream of lower-frequency disturbances
(e.g. figure 11 from Kawakami et al. 1999), but this offers only partial confirmation of
the present result as it is unclear whether the higher frequencies observed previously
correspond to type-I or type-II modes. The origin of this apparent discrepancy may
be the initial amplitudes of the various secondary instability modes. If type-I modes
have significantly higher initial amplitudes than the type-II modes they could easily be
observed first in spite of their lower growth rates. While nothing is known about the
receptivity of the secondary instabilities, the fact that the amplitude of the background
turbulence decreases with frequency suggests that the lower-frequency type-I modes
are likely to have larger initial amplitudes.

At x/c = 0.39, the mean-flow contours are essentially unchanged and the secondary
instability modes retain their earlier character. The 6.1 kHz type-II mode is still not of
high enough amplitude to render the background fluctuation level unimportant, so an
energy integral would include a large contribution from the region outside the mode.
This is one drawback of the whole-field integration technique; it cannot be used to
pinpoint very low-amplitude modes. Moreover, the type-II mode continues to droop
into the mode-I region, so it is impossible to determine whether the measurements
are detecting a single mode or two separate mechanisms that overlap both spatially
and spectrally.

At x/c = 0.40, breakdown occurs. The contours in figure 22 indicate that the mean
flow has already lost much of its structure high in the boundary layer and that the
wall shear has increased dramatically. The velocity-fluctuation spectra are not as
dramatic as the turbulent spectra that indicated breakdown for the baseline

[
18|12

]

case, but there is a considerable loss of spectral structure. In particular, the mode-I and
mode-II secondary instabilities decrease in amplitude from x/c =0.39 to x/c =0.40.
Lacking a more clear indication, the combination of the mean flow and spectral
changes is taken as the breakdown criterion in this case. The most interesting feature
of this case is that following breakdown, the total r.m.s. velocity fluctuations (shown
in figure 23) are coincident with the location of 200 Hz activity and not with either of
the secondary-instability modes. Despite this, the increase in wall shear occurs across
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Figure 22. Mean-flow velocity contours, Rec = 2.4 × 106,
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roughness, x/c = 0.40,

contour lines at U/Uedge = 0.10, 0.20, . . . , 0.90.
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Figure 23. Total velocity-fluctuation r.m.s. distribution, Rec = 2.4 × 106,
[
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]
roughness,

x/c = 0.40, 20Hz–8.0 kHz bandpass. Lines are 10% contours of the maximum r.m.s.
fluctuations.

the entire spanwise extent of the structure, including the region to the left of the
upwelling region that is more closely associated with the secondary than the primary
fluctuations.

The growth rates of the stationary crossflow vortex, the 200 Hz mode, and the
3.0 kHz mode are shown in figure 24. The 6.1 kHz mode is not shown both because
it never appears as a distinct mode and because its amplitude is so low that an
amplitude integration would include a significant contamination by the background.
The 200 Hz mode grows throughout the entire boundary layer with a growth rate that
does not change nearly as much as one might expect given the dramatic variations
that occur in the underlying mean flow. The 3.0 kHz mode-I instability has a lower
growth rate here than was observed in the baseline case. It is not known whether
this is a consequence of the growth being observed upstream of that in the baseline
case or is a purely local effect that only depends on the details of the stationary
structure. The most significant observation here is that the growth and amplitude
of the low-frequency fluctuations cannot be ignored relative to the high-frequency
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Figure 24. Velocity-fluctuation r.m.s. growth, Rec = 2.4 × 106,
[
54|12

]
roughness.

fluctuations. In this case, both types of fluctuations may be jointly responsible for
breakdown.

The stationary-mode growth curve displays a notched appearance, that is, growth
and saturation followed by a slight decrease in amplitude, then slightly more growth
before breakdown. Although it is more obvious here, the same phenomenon occurs
in the baseline case (figure 18). This behaviour was observed by Reibert et al. (1996)
using

[
18|12

]
and

[
48|12

]
but not

[
6|12

]
roughness. Those experimental results were

duplicated by the NPSE results of Malik et al. (1999) and Haynes & Reed (2000)
and, therefore, this appears to be a real effect and not experimental error. Although
the mechanism is not clear, these variations might be the long-wavelength steady
oscillations of the nonlinear equilibrium solutions found by Koch et al. (2000).

3.3. Reduced-Reynolds-number configuration

We now move to
[
54|12

]
roughness with Rec = 2.0 × 106. This configuration

demonstrates the effect slightly subcritical forcing has on the secondary instability and
breakdown; the lower Reynolds number means that the most amplified stationary
wavelength is longer than 12 mm, about 13.5 mm. The lower Reynolds number will
produce transition at a larger value of x/c, but what is of primary interest is the
identification of the secondary-instability modes and the relative importance of the
secondary modes to the fluctuations of the primary instability.

The measurements for this case begin at x/c = 0.40, where there is already some
overturning of the stationary structure but the fluctuation spectra are all of very
low amplitude. The structure develops with only the low-frequency mode detected
until x/c = 0.46, where a type-I secondary mode first appears, centred at 2.4 kHz. A
200 Hz low-frequency mode demonstrates the same sort of redistribution that was
observed for the preceding cases. At x/c = 0.50, the mean-flow contours and spectra
show that for this Reynolds number and roughness configuration, the boundary layer
has more of the character of the baseline case than of the high-amplitude-roughness
configuration. The low-frequency mode does not extend to higher frequencies and the
mode-I secondary-instability frequency is growing significantly.

Moving to x/c = 0.55, the appearance of the instability modes is quite dramatic.
The mean-flow contours (figure 25) are similar to the preceding cases, but now the
spectra (figure 26) show dramatic growth of the mode-I peak as well as at least two
additional modes at two and three times the frequency of the mode-I peak. The spatial
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Figure 25. Mean-flow velocity contours, Rec = 2.0 × 106,
[
54|12

]
roughness, x/c = 0.55,

contour lines at U/Uedge = 0.10, 0.20, . . . , 0.90.
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Figure 26. Fluctuating-velocity spectra, Rec = 2.0 × 106,
[
54|12

]
roughness, x/c = 0.55,

z = 85.6 mm.

distributions of the 2.4 kHz, 4.9 kHz, and 7.5 kHz modes are shown in figure 27. (The
200 Hz mode appears in its usual position relative to the mean-flow structure.) At this
chord location, all of the high-frequency modes lie in the mode-I orientation where
the ∂U/∂z shear is strongest. There is no evidence of mode-II behaviour.

Breakdown is first detected at x/c =0.57. The mean-flow distribution is essentially
unchanged, but the spectra near the wall to the left of the low-momentum upwelling
region have a flat, turbulent character. Once again, breakdown is highly localized,
because spectra obtained elsewhere in the field do not show evidence of turbulence.
The total velocity-fluctuation r.m.s. distribution is shown in figure 28. This figure
shows that the low- and high-frequency activity are about equally important for this
breakdown scenario because the two regions of the stationary structure have equal
intensities. The growth of the r.m.s. fluctuations (figure 29) in this case is quite similar
to what is observed in the baseline case. Two distinct type-I secondary-instability
modes centred at 2.4 kHz and 4.9 kHz can be tracked for many chord stations. Unlike
the baseline case, the 4.9 kHz mode does appear to be a true harmonic of the 2.4 kHz
mode. At no position in the transition region are type-II modes detected.
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Figure 27. (a) 2.4 kHz, (b) 4.9 kHz, and (c) 7.5 kHz velocity-fluctuation r.m.s. distribution,
Rec = 2.0 × 106,

[
54|12

]
roughness, x/c =0.55, 200Hz bandpass. Lines are 10% contours of

the maximum in each band.
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Figure 28. Total velocity-fluctuation r.m.s. distribution, Rec = 2.0 × 106,
[
54|12

]
roughness,

x/c = 0.57, 20Hz–12.0 kHz bandpass. Lines are 10% contours of the maximum r.m.s.
fluctuations.

3.4. Increased-Reynolds-number configuration

As a fourth case we consider Rec = 2.8 × 106 with
[
54|12

]
roughness. Here the 12 mm

crossflow waves produced by the roughness array are supercritical; without artificial
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Figure 29. Velocity-fluctuation r.m.s. growth, Rec = 2.0 × 106,
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roughness.
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Figure 30. Mean-flow velocity contours, Rec = 2.8 × 106,
[
54|12

]
roughness, x/c = 0.30,

contour lines at U/Uedge = 0.10, 0.20, . . . , 0.90.

roughness a 10.2 mm wave would dominate. The data presented for this case begin at
x/c =0.30, where the secondary instability is first detected. What is immediately
apparent from the mean-flow contour plot (figure 30) is that short-wavelength
harmonics of the 12 mm mode are quite important for this configuration. To the
left of the low-momentum upwelling, there is a distinct plateau without a strong
∂U/∂z gradient. At first glance, this suggests that the mode-I instability may not be
as important in this case as in the previous cases because its production mechanism,
the ∂U/∂z gradient, is suppressed in the region in which it could be most strongly
amplified. Instead, a type-II mode may play a more important role.

For this case, 300 Hz is representative of the most amplified travelling crossflow
wave and 3.6 kHz is representative of the mode-I instability. Distributions of these
two modes are given in figure 31. The shape of the 300 Hz mode is somewhat different
from the shapes that occur for critical and subcritical forcing; here there are distinct
maxima within the structure. The highest amplitudes occur just to the right of the
low-momentum upwelling region as in the previous cases, but the region near the
wall to the left of the upwelling also contains significant low-frequency fluctuations,
as does the upper part of the overturning region. Although the highest amplitude
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Figure 31. (a) 300Hz and (b) 3.6 kHz velocity-fluctuation r.m.s. distribution, Rec = 2.8 × 106,[
54|12

]
roughness, x/c = 0.30, 200Hz bandpass. Lines are 10% contours of the maximum in

each band.
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Figure 32. (a) 3.6 kHz and (b) 6.5 kHz velocity-fluctuation r.m.s. distribution, Rec = 2.8 × 106,[
54|12

]
roughness, x/c = 0.35, 200Hz bandpass. Lines are 10% contours of the maximum in

each band.

part of the structure occurs at roughly the same span position as in previous cases, it
is somewhat lower in the boundary layer and is elongated in span. The 3.6 kHz mode
is barely detectable over the background fluctuations, but it can be identified as a
type-I mode based on its location within the stationary structure.

Downstream at x/c = 0.35, the mean flow has a character similar to the mean
flow at x/c = 0.30. Spectra indicate that while the secondary instability has grown
significantly, it does not exist as close to the surface on the left side of the stationary
structure as it does in the other cases without supercritical roughness forcing. The
minor lobes of the 300 Hz mode have disappeared by this station, but it retains the
elongated shape seen at x/c = 0.30. Figure 32(a) confirms that the 3.6 kHz mode is
not close to the wall and is in fact creeping along the stationary structure into the
region occupied by the type-II instability. A type-II mode is detected at 6.5 kHz and is
shown in figure 32(b). By x/c =0.37, the peak amplitude of the 6.5 kHz type-II mode
is nearly equal to the peak amplitude of the 3.6 kHz type-I mode, despite having
started growing farther downstream. Mode II is more highly amplified, confirming
the expectation that supercritical forcing can suppress the mode-I instability in favour
of the mode-II instability.
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Figure 33. Total velocity-fluctuation r.m.s. distribution, Rec = 2.8 × 106,
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x/c = 0.385, 20Hz–12.0 kHz bandpass. Lines are 10% contours of the maximum r.m.s.
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Figure 34. Velocity-fluctuation r.m.s. growth, Rec = 2.8 × 106,
[
54|12

]
roughness.

Breakdown is observed at x/c = 0.385. The mean-flow contours do not appear
markedly different and only the spectra above the low-momentum upwelling indicate
that this location has undergone breakdown. The total r.m.s. fluctuations for this
location are given in figure 33; and for this distribution, they indicate that the
amplitude of the mode-II secondary instability is nearly as large as the low-frequency
mode.

Disturbance growth curves for the Rec =2.8 × 106 case are given in figure 34.
This figure shows that even though the travelling waves are of somewhat higher
amplitude, breakdown occurs almost immediately following the appearance of the
secondary modes. The growth of the secondary-instability modes is the lowest seen in
any of the experiments, but the secondary instability still appears to be a critical factor
leading to breakdown. The most interesting feature of this case is the confirmation
that the mode-II instability has a higher growth rate than the mode-I instability
for this level of supercritical forcing because of the modified characteristic of the
underlying mean flow.
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3.5. Effect of increased free-stream fluctuations

If one is to claim that the secondary instability is the dominant feature leading
to breakdown of the laminar boundary layer, an important piece of supporting
evidence could be that an increase in the initial secondary-instability amplitude leads
directly to accelerated breakdown. Two means of introducing such an increase are
attempted: free-stream acoustic forcing and enhanced free-stream turbulence. In both
cases, the idea is to choose a location just upstream of the breakdown location
and observe whether the introduction of an increased initial disturbance amplitude
at the secondary-instability frequencies moves the transition location upstream. A
measurement location just upstream of breakdown is used because this position
includes the integrated effect of the entire instability process, and if there is to be
any effect of enhanced initial amplitude, it will be most obvious here. Detection of a
positive result would then prompt more detailed measurements.

The experimental results of Radeztsky et al. (1999) would tend to discount the
likelihood of observing such a result for acoustic forcing, since in those experiments
no effect on transition was observed with up to 95 dB acoustic forcing at various
frequencies, including the secondary instability frequency range. However, those
experiments were conducted without periodic leading-edge roughness and hence with
a lower-amplitude, less-organized stationary-disturbance state. Use of acoustic forcing
with periodic roughness might yield a different result. Also, because the secondary
instability grows so rapidly, even a significant increase in its initial amplitude might not
be manifested in a dramatic change in the transition location. Because breakdown
occurs within a few percent chord of where the secondary modes destabilize, an
increase in the initial amplitude could at most move the transition location upstream
by this same few percent chord. Because the change in transition location could
be quite subtle, it is not clear that this would have been detected in the previous
experiment, because at that time, the details that we now understand regarding the
secondary-instability growth were not known.

Acoustic forcing is more straightforward than turbulence forcing because it simply
requires activating speakers in the plenum upstream of the test section during an
experiment. This means that it is possible to obtain high and low acoustic levels
during a single run without any experimental hardware changes. Two tests are
conducted, both with

[
54|12

]
roughness. The first test is conducted at Rec =2.4 × 106

with the hot-wire probe located at x/c = 0.39, z = 86–89 mm, the location of maximum
secondary-instability activity. At these locations, sound frequencies between 2.0 and
4.0 kHz are applied at the maximum amplitude available in the facility, 125 dB.
At frequencies above 2.8 kHz, the sound amplitude decreases significantly due to
the capability of the speakers (woofers designed for frequencies in the 100s of Hz).
For the entire range of secondary-instability frequencies, no change in the velocity-
fluctuation spectra is observed at any position within the stationary-vortex structure
at the 39% chord position. The second test is conducted at Rec = 2.0 × 106 with
the hot wire at x/c = 0.55, z =88 mm (see figures 25 and 27). These conditions are
better suited to the objective because the mode-I secondary instability is centred near
2.4 kHz, within the capability of the speakers, and because the maximum amplitude
of the secondary instability is much greater than the surrounding frequency band, so
the spectral signal is unambiguous. However, as with the higher Reynolds number
case, maximum-amplitude acoustic input from 1.5–3.0 kHz has no discernible effect
on the boundary layer.

To assess the effect of free-stream turbulence, a small turbulence-generating grid is
positioned in the contraction cone upstream of the test section. The grid produces
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u′
r.m.s./U∞ as high as 0.29%, high enough that travelling-wave-dominated flow might

result. Spectra of the u′ in the free-stream are flat up to about 800 Hz and roll
off thereafter, reaching the electronic noise floor by 4 kHz. Tests at all three chord
Reynolds numbers are performed with the turbulence grid in place. In all cases
the travelling waves are enhanced, but in no case does the transition location
change, and no changes are detected in the behaviour of the secondary instability.
The fundamental problem with this approach is applying high-frequency turbulence
without also inducing the low-frequency content that will produce overwhelmingly
large travelling crossflow waves and change the nature of the primary instability from
stationary- to travelling-wave dominated.

These tests underscore a fundamental difficulty associated with boundary-layer-
stability experiments. One must always consider receptivity when attempting a
controlled means of forcing an instability. For secondary instabilities, the problem is
even more pronounced. Here, the receptivity encompasses both the initial entrainment
of the free-stream disturbance of the desired frequency and the subsequent evolution
of that mode until the secondary instability becomes amplified.

4. Conclusions
This experiment is intended to provide conclusive data regarding the breakdown

mechanism of crossflow-dominated swept-wing boundary layers: a rapidly growing
high-frequency secondary instability of the stationary crossflow vortices. The
secondary-instability modes observed in this experiment are destabilized once the
primary crossflow waves reach high amplitudes and grow much more rapidly than
the low-frequency mode that has its origins in the most amplified travelling crossflow
wave predicted by linear theory. Local breakdown is always observed within a
few percent chord of where the secondary instability is first detected. The data
presented here overwhelmingly support the idea that the secondary instability, perhaps
in combination with the low-frequency fluctuations, is responsible for breakdown.
Additionally, the results confirm the DNS of Wassermann & Kloker (2002) that
shows transition not to be the result of an absolute instability.

The secondary-instability modes that are observed may be classified as either type-I
or type-II modes. The type-I modes lie inboard of the low-momentum upwelling zone
of the stationary crossflow vortices and occur under a wider range of conditions than
the type-II modes. The type-II modes are located high in the boundary layer above
and somewhat outboard of the upwelling zone. Both types are inflectional instabilities
of streamwise flow. Type-I modes are driven primarily by a ∂U/∂z gradient, whereas
the type-II modes are driven primarily by a ∂U/∂Y gradient. The more-frequent
appearance of the type-I mode is similar to behaviour observed by Swearingen &
Blackwelder (1987) for secondary instabilities of Görtler vortices for which spanwise
shear layers are more effective than wall-normal shear layers at producing secondary
instabilities.

The type-I mode extends diagonally in the (Y, z)-plane and can be imagined as
wrapping around the outside of this portion of the stationary vortex. This is the
behaviour shown very clearly in the rotating-disk flow visualizations of Kohama
(1984, 1985) and in the DNS studies of Wassermann & Kloker (2002). In nearly
all circumstances, the lowest-frequency secondary instability is a type-I mode and is
the highest-amplitude mode that is detected. In many instances, one or more higher-
frequency type-I modes coexist at the same location. These are observed at close to
integer multiples of the lowest-frequency type-I mode. Although this strongly suggests
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that the higher frequencies are harmonics of the dominant mode, the growth rates
do not always support this. These results also show that to properly understand the
breakdown region in as much detail as possible, narrow frequency bands should be
investigated separately. As many as five or more instability modes exist in some cases,
so tracking the behaviour of bands as wide as a kilohertz or more can lump the
behaviour of many modes into a single result.

In cases where it is observed, the type-II mode is about twice the frequency of the
highest-amplitude type-I mode. It is often overwhelmed by the growth of the (possible)
harmonic of the fundamental type-I mode and is therefore extremely difficult to track
experimentally. One exception is the supercritical forcing case, Rec = 2.8 × 106 with[
54|12

]
roughness. For this configuration, the spanwise shear region is reduced and

the type-I modes do not reach the amplitude that they do under more favourable
conditions. In this environment, the type-II mode is detected more easily and plays
an important role in triggering transition.

It is worth noting that Li & Malik (1995) observed exactly the same selection
mechanism in simulations of Görtler vortices. Li & Malik find that when the primary
mode’s wavelength is small and the spanwise gradients are large the dominant
secondary instability is the sinuous mode that is located on the sides of the Görtler
vortex. If the wavelength of the primary instability is increased then the horseshoe
mode located on top of the vortex dominates. This is exactly parallel to what is
observed here. The type-I mode located on the side of the vortex dominates when the
primary wavelength is subcritical (short) and the type-II mode that is located on top
of the vortex dominates when the vortex spacing is supercritical (large).

Although the low-frequency fluctuations that correspond to the most amplified
primary disturbance are not the focus here, their behaviour is interesting and
would be a useful topic of further study. The low-frequency fluctuations begin as
a spanwise-uniform mode at chord locations where mean flow is not yet deformed
by the stationary vortices. However, these fluctuations become highly localized within
the stationary structure even before the stationary mode saturates. Despite the
modification of the mean flow and the spatial redistribution of the low-frequency
mode that results, these modes appear to grow linearly throughout transition.

Comparing the
[
54|12

]
and

[
18|12

]
roughness cases at Rec = 2.4 × 106 indicates

that an increase in roughness amplitude increases the amplitude of the low-frequency
mode. However, even when the low-frequency fluctuations are quite large, breakdown
does not occur until the secondary instability is destabilized. In the higher-amplitude-
roughness case it is not possible to say whether the secondary instability alone or
some combination of the low- and high-frequency disturbances leads to breakdown.
However, breakdown always occurs within a few percent chord of where the secondary
instability destabilizes. Therefore, the secondary instability always appears to be
important but the low-frequency fluctuations may only be important in some cases.
An attempt was made to accelerate transition using free-stream sound and enhanced
free-stream turbulence but these efforts were unsuccessful because of the difficulty of
directly exciting the secondary instability.

Taken as a whole, the experiments demonstrate the range of behaviours that
are exhibited by the secondary instability and emphasize that to predict transition
location in crossflow boundary layers, one must be capable of predicting secondary-
instability behaviour. What we have seen is that the most important factor for
the secondary instability is the wavelength of the stationary disturbances. Different
wavelengths, and their classification as subcritical, critical, or supercritical, play an
important role in selecting the dominant secondary-instability mode, either type I
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or type II. Previous experiments have shown that roughness amplitude may not
be important for determining transition location because of amplitude saturation.
That idea is extended here by noting that increased roughness amplitudes increase
the amplitudes of low-frequency disturbances, but these do not appear to trigger
breakdown independently. This may not be so for low-frequency disturbances of larger
amplitudes than are produced in this experiment, but the low-disturbance environment
is more representative of flight and therefore represents the most important practical
case. In the low-disturbance environment, breakdown always appears to require
secondary-instability growth.
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